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Fig. 4. Excitation of the 8801 reflection, showing an extinction line 
along the mirror plane of the whole pattern. The extinction in this 
case is due to a c glide. 

938 K. By analogy with LiTaO3, we conclude that 
LiZnTa309 at room temperature is paraelectric and 
that the addition of Zn to LiTaO3 lowers its Curie 
temperature. The density of LiTaO 3, D,,, is 7.4564 
g cm -3. There are six molecular units per hexagonal 

unit cell. For LiZnTa30 9, D,n = 7.61 gcm -3 and Z = 2 
per hexagonal unit cell (Shu et al., 1981). 

We are grateful to Mr Q. M. Shu for providing us 
with single crystals of LiZnTa30 9. 
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Abstract 

A discussion is given on simple grounds, not explicitly 
involving the dynamical deformation formalism, of the 
implications of having the outer part of the electron 
distribution vibrating significantly differently from the 
core. The use of a lattice dynamical shell model to 
represent this effect is examined in some detail, with 
particular reference to the framework within which 
such a model gives meaningful results. Predictions are 
given from the 14-parameter shell models and the 
11-parameter valence-shell models for the difference 
between Debye-Waller B values of the shells and cores 
and also for the effective Debye-Waller factors for the 
deforming ions in 14 zinc-blende-structure compounds. 
It is concluded that the effective X-ray Debye-Waller 
B at very small sin 0/2 is typically several percent 
smaller than the core B value, owing to a very 

0108-7673/83/040533-06501.50 

substantial reduction in the mean-square displace- 
ments of shells compared with cores. Results are also 
given for the 15-parameter deformation-dipole models 
for eight materials. These show effects broadly compar- 
able in magnitude to the shell models but more varied in 
detail. Notably, some models show for the first time a 
larger rather than smaller Debye-Waller factor for the 
deforming ion. 

Introduction 

At least in the past decade, the accurate measurement 
of Debye-Waller factors has involved concern that not 
all of the electron distribution of an atom vibrates by 
the same amount. On the theoretical side one is also 
concerned that accuracy in calculating the core 
Debye-Waller factor is wasted if there are moderately 
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important discrepancies between the theoretical model 
and reality that have not been investigated at all. With 
these considerations in mind, it was thought worth- 
while to assess whether there could be significant 
disturbances to an analysis involving Debye-WaUer 
factors from the fact that an atom core and its 
outer-electron distribution do not vibrate by the same 
amount. This study is intended to complement the 
detailed investigation of the Debye-Waller factors of 
some 17 zinc-blende-structure compounds reported in a 
previous article (Reid, 1983, hereafter referred to as I). 
The effect considered has come to be called 'dynamic 
deformation'. It has been treated in the past through a 
deformation formalism which, though preserving great 
generality, has hidden some of the physical arguments 
involved. [See, for example, March & Wilkins (1978) 
and Reid & Pirie (1980) for two different approaches.] 
Before demonstrating that moderate effects are predic- 
ted for the materials under discussion, the first section 
discusses in more detail than has been done before the 
physical basis of the dynamic deformation effect 
without explicit recourse to the deformation formalism. 

The physical basis of treating dynamic deformation 

The current generation of lattice dynamical models 
used for the zinc-blende-structure materials all take 
account of the deformation of an ion during vibration 
and hence implicitly incorporate a different vibration 
for different parts of the ion. (These models are the 
shell model, the valence-shell model, the deformation- 
dipole model and the deformation-ion model, as 
detailed in I.) We shall consider the well known shell 
model as the archetype. The intra-ionic degree of 
freedom, the displacement of the shell relative to the 
core in pictorial terms, models the deformation. 
Because of this extra freedom, the absolute shell 
displacements differ from the core displacements. 
Hence the shells may have a different temperature- 
dependent Debye-Waller factor from the cores. 

Before looking in detail at the difference between 
shell and core Debye-Waller factors, it must be 
mentioned that the shell model includes another feature 
which has a bearing on the interpretation of the shell. 
For a finite but very small mass of a shell there are 
additional very high frequencies of vibration that to 
some extent model dynamic electronic processes 
associated with an energy-band spread of many 
electron volts. These processes may truly produce large 
very rapid electron-density fluctuations. However, they 
are not well accounted for by a lattice dynamical model 
such as a shell model (which gives them a spurious 
spatial coherence) because only their time average 
influences the normal phonon frequencies and is 
adequately parameterized by the model. 

It is relevant here to consider the very-high- 

frequency model modes because if they were to be 
included they would contribute a very large 
temperature-independent Debye-Waller factor to the 
shells, an effect which tends to infinity as the mass of 
the shell tends to zero. This can be seen as follows. As 
the mass of the shell (ms) tends to zero, the high 
frequencies (ogs) under consideration tend to infinity 
such that msO92 remains constant (since it is deter- 
mined by a mass-independent force matrix). Because 
the high frequencies always have zero-point energy, 
every term in the lattice dynamical sum for the 
mean-square displacement of the shells will contain the 
factor (m~OJs) -1 which tends to infinity as ms -m. Indeed, 
if one looks further at these very-high-frequency modes, 
one finds that they make a temperature-independent 
contribution to the total diffuse scattering throughout 
reciprocal space. As such it is considered that the 
complete scattering given by these modes of a lattice 
dynamical model is trying to include processes that give 
rise to some of the Compton scattering, which is better 
modelled by other techniques. Hence the (temperature- 
independent) contribution of the very high frequencies 
is not included in the sums for the shell Debye-Waller 
factors. For completeness it should be added that since 
the cores are almost stationary at these very high 
frequencies the influence of these frequencies on the 
core Debye-WaUer factors is negligible. 

Let us look directly at how the Debye-Waller factor 
of a shell enters the expression for X-ray Bragg 
scattering at scattering vector K. By keeping within the 
shell-model picture we can bypass the dynamic- 
deformation formalism. In general, the Debye-Waller 
factor W enters in a double summation over unit-cell 
entities kk'  of the form 

I s = N Z f k  exp(-- Wk)f,'* exp(-- W,,) 
kk '  

x exp[iK.r(kk')]  A(K, G), (1) 

where fk is the scattering factor of the k entity, r(kk') 
the vector between equilibrium positions of the entities 
and G is a reciprocal-lattice vector (see, e.g., Willis & 
Pryor, 1975). If each ion k is now imagined as a core 
entity, ke, and a shell entity, ks, at the same equilibrium 
position, then each term in the summation (1) becomes 

[f,c exp(--Wkc) +fks exp(-- Wks)] 

× [f**c, exp(-W~,) + f*~, exp(--Wks,)] exp[iK.r(kk')] .  
(2) 

The scattering factor of an atom can be divided 
between core and shell because the scattering factors 
depend linearly on the electron charge density, i.e. 

fk=fkc+fks. 

In the present application these scattering factors are 
considered as functions of the magnitude of K only. If 
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Wks c is the difference in the Debye-Waller factor 
between core and shell, i.e. 

Wk~e = Wks -- Wk~, (3) 

then (2) becomes 

[fkc + fks exp(- Wks~)l exp(-Wk~) 

x [ f~,  + f~ ,  exp(-Wksc,)] exp(--Wk~,) exp[iK.r(kk')]. 
(4) 

The term Wksc represents in one way the dynamic- 
deformation effect. Although there is no a priori reason 
why it must be so, it turns out that Wks~ is generally 
negative, often quite substantially so. Hence (4) shows 
that dynamic deformation effects may (substantially) 
enhance the scattering factor of the part of the ion 
identified as the shell. Put in other terms, if (1) has been 
the essential part in a deduction of scattering factors 
then the scattering factor of the electrons which are 
deforming relative to the core will be overestimated 
proportionally by exp(-Wkse). 

The approach to dynamic deformation based on the 
deformation formalism used by Reid & Pirie (1980) 
and elsewhere has been to write (2) in terms of an 
effective Debye-Waller factor, W/', for each site, 
composed of the core Debye-Waller factor plus a 
K-dependent modification. Thus 

W g =  W~ + AWk, 

with A W k depending on the magnitude of K. In terms 
of Wff the Bragg scattering is simply 

I n = N ~fk  exp(- Wff)ffl exp(- W~,) 
kk '  

x exp[iK.r(kk')lA(K, G) (6) 

and comparing the terms in (6) with (4) gives, after 
some manipulation, 

exp(--A Wk)= [fk~ + fk+ exp(--Wksc)l/fk (7) 

as the general relationship determining the effective 
Debye-Waller factor as a function of K. In the limit of 
small sin 0/2 (in practice not particularly small) the 
exponentials in (7) can be expanded to first order giving 

zlWk As wk, . 

Finally, it is more convenient to present results for 
isotropic materials in terms of the Debye-Waller B 
values rather than the W of the general formulae 
discussed so far. Since 

where the quantity Bks ~ is the lattice-vibration- 
determined part of the effective Debye-Waller factor 
(equivalent to S of Reid & Pirie, 1980). From (3), (9) 
and the lattice dynamical sum for the Debye-Waller B, 
Bks c is clearly given by 

Bkse-  - -  . l - ~ l  I I ~ + ~/'(k/qJ') 
3 N q j \  /,VIE '"k 

[ g(k lq j )  + ~'~(k/qj)] [~e*(k/qj). "[ - ~  -- ~(k/qj) l /mk] 

+() 
- 3N q+ --~ qJ t " 7¢/(k/qj) 

~'(k/qj) ] 
+ ~¢/'*(k/qj). ~,/------~-- + ~ff /*(k/qj) . .~(k/qj)  , 

i l l ,  k 

(11) 

where $'(k/qj) is the eigenvector of the core in mode j 
of wavevector q and T-~(k/qj) is the eigenvector of the 
relative shell-core displacement. 

Equations (10) and (11) are the same as equations 
(8) and (7) in Reid & Pirie (1980) derived through the 

(5) different approach of the deformation formalism, 
except that the deformation formalism was followed 
through only with terms linear in the relative shell-core 
displacement term ~ ( k / q j ) .  Since in practice Bks c is 
negative, the second-order term 1:7//12 in (11) when 
taken into account slightly reduces the magnitude of 
the effect. This second-order term will be significant if 
Bksc/Bkc (or equivalently Sk/B k in earlier work) is large. 

The following section will present Bks c values 
calculated using (11) in order that the variation of 
effective Debye-Waller factors can be estimated 
through (10), (9), and (5) or the enhancement to the 
shell scattering factor seen through (4). 

The foregoing discussion is phrased in terms of the 
shell model because in its basic conception the shell 
model is more than a lattice dynamical model since it 
has an additional parameter per ion for electronic 

(8) distortion. The deformation-dipole formalisms em- 
phasize that the lattice dynamical vibrations are 
determined only by the product of the shell charge Y(k) 
and shell-core displacement ~'f(lk), this product being 
the electronic dipole moment p(/k) of an ion. 

W = B sin 2 0/22 (9) 

the quantities Bkc, Bks, Bks c, etc. are simply related to 
their W counterparts by dividing by sin 2 0/22. We shall 
explicitly calculate 

fks ABk= 8 +c, (10) 

p(/k) = Y(k) e 7¢~(lk), (12) 

where e is the magnitude of the electronic charge. 
Hence, modelled electronic dipole moments can be 
made the basis of equivalent shell Debye-Waller 
factors by choosing reasonable values for Y(k) and 
following through the use of (12). 
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The shell-model results 

Expression (11) for Bks c, the difference between shell 
and core Debye-Waller factors, was evaluated by 
direct summation over a uniform mesh of 64 000 
wavevectors in the Brillouin zone, for a range of 
temperatures 1 to 1000K. The eigendata were 
generated by the lattice dynamical routines of Kunc & 
Nielsen (1979b). There is no significant zero-phonon 
contribution since the relative shell-core displacements 
tend to zero in the modes where the eigenfrequencies o) 
tend to zero. 

Table 1 summarizes the materials and models, listing 
Bk, c at 295 K which can be compared with the Bk~ 
values in I to gauge the fractional deficit in mean- 
square vibrational amplitudes of the shells. The 
previous discussion demonstrated that a more directly 
observable quantity is AB k, which in addition depends 
on the ratio of shell to ion scattering factors (equation 
10). The maximum value of AB k therefore occurs at 
K = 0 .  

ABk(K = O) = v - u  /T to ta l  " g~'ksc"-'k , (13) 

where Z~: °tal is the total number of electrons in the k ion. 
Table 1 shows the values given by the models for this 
maximum as a fraction of B k. For larger K this ratio 
will decrease at a rate that depends on the detail of the 
distorting electron distribution, which in turn depends 
on the number of electrons effectively participating in 
the distortion. 

Broadly speaking, the ABk(K = 0) are a few percent 
of Bkc, with different models for the same material 
typically differing by a factor of two. As might be 
expected, the lighter ions tend to show the largest 
effects. All the shell models predict a smaller shell 
vibration than core vibration. Most of the valence-shell 
models have 'large Z' ,  that is an ionic charge about 2, 
and give positive shell charges for the cation. There is 
no clear evidence that these positive charges arise from 
the time-averaged effects t)f holes at the top of the 
valence band: it is most likely that they are an artefact 
of obtaining a suitable balance of forces with a limited 
number of parameters in the dynamical matrix. 
Whatever their dynamical significance, it is certainly 
true that for scattering purposes Yk and ZI: °ta~ in (13) 
refer to numbers of real electrons and hence for these 
models Y~, has simply been interpreted as the average 
number of electrons significantly participating in the 
distortion. 

Some support for the generally small values of shell 
vibration comes from the analysis of molecular beam 
scattering experiments by Johansson & Persson (1980). 
The Debye-Waller factor determined from this scatter- 
ing, which is dominated by the outer electrons, is 
generally found to be appreciably smaller than the core 
Debye-Waller factor. Unfortunately the materials 

Table 1. Bks c is the difference between shell and core B 
values at 295 K calculated from equation (11) 

The sources of shell model (SM) parameters and valence-shell 
model (VSM) parameters are given in I. The final columns show 
by what fraction the effective Debye-Waller factor for the whole 
atom differs from the core Debye-Waller factor (Bk~) in the limit of 
sin 0/,l = 0. The values are calculated from equation (13). (AB k is 
zero for a rigid ion.) For ions marked * the modelled shell charge 
is positive but is taken as negative in equation (13) for the reasons 
discussed in the text. For the ion t ,  the modelled shell charge 
exceeds the ionic charge but could be reduced to a reasonable 
value by the transformation discussed in the final section without 
much affecting the table entry. 

Bk~ c (A2) ABk(K = O)/Bkc (%) 

Model Cation Anion Cation Anion 

GaP SM -0.30 -0-42 -3.0 -8.4 
VSM -0.07 -0.13 -2.3* -3.4 

GaAs SM -0.36 -0.42 -2.9 -6.9 
VSM -0.07 -0.14 -2-2* - 1-9 

GaSb SM(A) --0-30 -0.20 --6.6 -2-9 
SM(B) -0.21 -0-30 -4-8 -4.3 
VSM -0.14 -0.18 -2-5* -1.3 

InP VSM -0.10 -0.14 - 1-5" -2.4 
InAs VSM(A) -0.10 -0.17 -1.3" -1-8 

VSM(B) -0.08 -0-17 -1.4" -1.9 
InSb SM -0.63 -0-38 -3-8 -4.0 

VSM -0.12 -0.30 - I  .0" -1.9 
ZnO VSM -0.06 -0.12 -3.0* -4.3 
ZnS VSM(Ia) -0-27 -0.03 -6.4 -1-6 

VSM(IIa) -0.11 -0.13 -3.0* -2.4 
ZnSe VSM -0.11 -0.18 -2.7* -1.9 
ZnTe VSM(I) --0-05 -0.20 -0.2 -2.1 

VSM(II) -0.25 -0.15 -3.1" -0.8 
CdTe SM(I) 0.90 -0.33 -1-6 -2-6 

SM(II) -0-81 -0.24 -2.3 -2.  I 
CuCI SM -2-01 -0.57 -0-1 -0.9 
CuBr SM(I) -0.07 -0-95 -1.7 -1.8 

SM(II) -1.59 - ! .17  -2.7 -1-6 
Cul SM -0.69 -0.04 -0-1 -2 .9 t  

Table 2. Showing the effect o f  altering the shell charge 
Yk through the parameter N discussed in the text for  

GaAs at 295 K 

The quantities listed are those of Table 1. For this table the sums 
were performed over only 1000 wavevectors in the Brillouin zone 
but the resulting loss of accuracy is not significant. 

ABk(K = O)/B~c 
Yk ( - le l )  Bks c (A 2) (%) 

N Ga As Ga As Ga As 

0.5 0.78 1-87 -0.496 -0.541 -2.0 -4-4 
1-0 1-56 3.74 -0.361 -0.417 -2.8 -6.9 
2.0 3.13 7.47 -0-209 -0-245 -3-3 -8.0 
3-0 4.69 I1.21 -0-146 -0-172 -3.4 -8.5 
5.0 7.82 1 8 . 6 8  -0-090 -0.107 -3.6 --8-7 

studied were not the zinc-blende-structure compounds 
of interest here. 

The variation of the shell Debye-Waller term with 
temperature is generally similar to that of the core term, 
resulting in quite a stable value for ABk/Bkc. The 
percentages shown in Table 1 vary typically by 
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between one half to one as the temperature is lowered, 
usually becoming more negative but not always so. 

Table 3. The deformable-dipole model predictions for 
the effect of  dynamic deformation on the Debye-Waller 
factor of  the whole atom as tabulated in Tables 1 and 2 

Other models 

Pirie & Reid (1981) recently discussed how an extra 
parameter (N) could be introduced into any shell model 
to change the amount of charge in the shell and to 
redistribute the forces amongst the force constants. The 
notable feature about this extra parameter is that it 
does not alter the model frequencies or, indeed, the core 
eigenvectors. Increasing N from its implied value of 1.0 
puts more charge into the shell and makes the ions 
more rigid. Reducing N towards zero weakens all the 
forces holding the shell and correspondingly reduces 
the shell charge. Hence the Bks c values in Table 1 purely 
represent the shell models as traditionally param- 
eterized (N = 1). As N is reduced from 1 towards 0, the 
relative shell-core displacements increase by a factor 
1/N. It happens for at least a sample of the materials 
examined that this at first reduces Bks and hence 
increases Bks c. However, as N approaches zero what is 
left of the shells flops around with very large amplitude 
and correspondingly large Bks. All this happens without 
any change in the behaviour of the cores. 

If the B value of the deforming electrons, represented 
by Bks, is essentially observable then such an obser- 
vation will determine N and hence provide insight into 
the relative strengths of shell-shell, shell-core and 
core-core forces. If, on the other hand, only AB k is 
observable then this will provide a quantity independent 
of Bkc that is more of a check on the model as a whole. 
The difference arises because YkBk~¢ is not nearly so 
dependent on N, having a variation due only to the 
second-order term I~g/'(k/qj')l 2 in Bks c. Illustrative data 
are tabulated in Table 2. Therefore, although fitting a 
shell model to phonon frequencies in no way deter- 
mines the motion of the shells, the dynamic defor- 
mation effect is moderately well predicted. The de- 
crease with K of AB k will depend somewhat on N if one 
interprets the model literally in that for large N more of 
the ion is associated with the shell and hence one would 
on the whole expect a slower decrease in the scattering 
factorfk ~ with K. 

Finally, to test a different set of models, the 
deformation-dipole models were investigated using the 
subroutines of Kunc & Nielsen (1979a) even though 
the parameterized deformable-bond approximation has 
been shown in I to be only moderately successful at 
predicting B k values. For all materials except SiC a 
notional charge of 8 electrons was used to produce shell 
displacements :Y¢/" through (12), displacements that 
were sufficiently small to emphasize the linear terms in 
(11) for Bks ~. For SiC a charge of 2 was used. As has 
been seen, if the effects are modest then the actual shell 
charge does not much influence ABJBkc. 

The model parameter sources are given in I. HgTe and SiC do not 
have corresponding shell models in Table 1. SiC shows an un- 
usually large temperature dependence. The line marked (L) gives 
results at 1 K; that marked (H), results at 1000 K. All other 
materials were evaluated at 295 K and seldom show variations 
over temperature in the tabulated percentage of greater than one. 

ABk(K = O)/Bkc (%) 

Cation Anion 

GaP -0.8 4.0 
GaAs -0.6 -4.2 
InSb 1.0 3.3 
ZnS 0.4 0.7 
ZnSe 2.7 5.9 
HgTe -0.0 -2.1 
CuI -1.6 -1.5 

8.5 (L~ - 1.7 ~L~ 
SiC O. 7 (m -7.9 Cm 

Table 3 shows values of ABk/B,c that are rather 
different from those of the shell models. Five ions 
always show equivalent shells with more vibration than 
the cores, giving a positive AB k. This effect can be 
achieved in the shell model if one sets Pirie & Reid's 
parameter N as negative, which reverses the sign of the 
inter-ion core-shell force constants subscripted T and 
reverses the sign of the shell charge. These reversals 
affect both ions. Additional effects not seen in the table 
are that the anions of ZnS and HgTe and the cations of 
GaAs and InSb exhibit a linear term in (11) which 
changes sign at one temperature, though the actual AB k 
changes sign at a different temperature due to the 
influence of the second-order term in ~ Some 
equivalent shell displacements are quite large, causing 
the second-order term to increase the effect substan- 
tially as the shell charge is made smaller. This occurs 
particularly for both ions in SiC and also for the anions 
of GaP, ZnS and ZnSe. 

Since most of the ions under discussion have the bulk 
of their electron density as a fairly rigid core, it is clear 
that all the lattice dynamical evidence points to 
substantially different vibrations being associated with 
the outer levels of the electron distribution. The size of 
the effect predicted by the models is linked to the 
relative size of different forces that act on the ion, as 
has been detailed, but it is clear that the models that 
predict core Debye-Waller B values reasonably will all 
predict much smaller vibrations for the 'shell' 
electrons. If the ions are treated as a whole, the effective 
Debye-Waller B will differ from the core B value for 
low-index reflections at the highest level of accuracy (a 
few percent) for many or the ions discussed here. 

I would like to acknowledge the value of discussions 
with Ole Holm Nielsen and James A. D. Matthew 
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concerning the interpretation of the very-high- 
frequency shell-model modes. 
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Abstract 

The effect of extinction on Bijvoet ratios is demon- 
strated. It is suggested that an observed anomaly in the 
wavelength dependence of ZnSe Bijvoet ratios is due 
to the Borrmann effect. It is shown that wave- 
length-dependent studies of extinction may be used to 
obtain extinction parameters from relative intensity 
measurements without resorting to a refined scale 
factor. 

Introduction 

The importance of the extinction problem derives from 
the common necessity of using available crystals which 
satisfy neither the perfection criteria of dynamical 
theory nor those of kinematic theory. 

The most commonly used extinction theory is that 
first derived by Zachariasen (1967) from a set of 
transfer equations and later revised by Becker & 
Coppens (1974a,b). Various authors have discussed the 
shortcomings of Zachariasen's theory, the main criti- 
cisms being its kinematical nature and resulting inap- 
plicability in the case of severe primary extinction 
(Werner, 1969; Lawrence, 1972), its neglect of the 
angle dependence of the effective path length through 
the crystal (Cooper & Rouse, 1970) and its failure in 
cases of severe extinction (Cooper & Rouse, 1970; 
Becker & Coppens, 1974a). Most tests of the validity 
of this theory known to us include a simultaneous 
refinement of the extinction parameter(s) and a scale 
factor (e.g. Zachariasen, 1968a; Cooper, Rouse & 
Fuess, 1973), notwithstanding the high correlation 
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usually observed between these parameters (Lander & 
Mueller, 1970; Stevens & Coppens, 1975). 

The ZnSe specimen used in this study has the cubic 
zinc-blende structure. The noncentrosymmetric nature 
of this structure and the presence of anomalous 
dispersion effects results in the manifestation of 
non-zero Bijvoet ratios, which has been discussed by 
Mclntyre, Moss & Barnea (1980) (hereafter referred to 
as MMB) and corresponds to a breakdown of Friedel's 
law (Friedel, 1913). 

The work described in this paper arose from the 
observation that measurements of Bijvoet ratios may 
be significantly affected by extinction [see Ramaseshan 
& Abrahams (1975) for discussions on this subject and 
Cole & Stemple (1962) and Fukamachi, Hosoya & 
Okunuki (1976) regarding the intensity ratio of 
Friedel-pair reflections]. In attempting to estimate the 
effects of extinction upon the Bijvoet ratios at various 
wavelengths, we found that we could derive values of 
extinction parameters without resorting to refined scale 
factors. However, we encountered a distinct region 
between the K absorption edges of zinc and selenium in 
which the derivation of consistent parameters proved 
impossible. We suggest that the systematic incon- 
sistency in this region is due to an enhanced con- 
tribution from the Borrmann effect (Borrmann, 1941; 
Zachariasen, 1968b,c). 

The most common method of obtaining values of the 
conventional extinction parameters r and g (the mean 
radius of the perfect-crystal domains and the quantity 
in the isotropic Gaussian distribution law describing the 
misalignment of the domains, respectively) is to carry 
out least-squares refinements of data obtained at two 
different wavelengths (2). In so doing one obtains two 
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